
HTSQL -- a "Native" Web Query Language

Clark C. Evans
Prometheus Research, LLC

cce@clarkevans.com
Abstract

Hyper-Text Structured Query Language (HTSQL)
is a standardizable middleware component that trans-
lates a HTTP request into an SQL query, performs the
query against a relational database, and returns the re-
sult as XML, HTML, CSV, JSON, or YAML. HTSQL
formalizes a URI-to-SQL translation, covering com-
mon database query constructs with a succinct, easy-
to-learn syntax. HTSQL decouples the application from
the datastore, putting the database itself "on the web".

Keywords: SQL, HTTP, URI, Relational Database

1. Introduction

Relational databases and the Internet are here to
stay, and so is their combination. A tedious and re-
current aspect of Internet application development is
database access: an HTTP request is sent from a web
browser to an application server, which the server then
translates into SQL, executes, and responds with the re-
sult-set formatted as CSV, HTML, XML, or increasing-
ly, JSON or YAML. Current approaches to this chal-
lenge are often application specific, poorly document-
ed, lack expressiveness, or are tightly coupled to a giv-
en programming framework. A reusable solution to this
pattern will not only speed application development but
will also enable a new class of inter-system collabora-
tion opportunities.

Hyper-Text Structured Query Language is both a
specification and an implementation of a "native" web
query language. Its objective is to provide a near-com-
plete mapping of URIs onto SQL while maximizing
readability. HTSQL supports modern file formats and
HTTP's best features: REST, error handling, request au-
thentication, compression and encryption. Versions of
HTSQL have been deployed in medical laboratories at
Yale University for the past three years. The most recent
deployment includes a two-tier solution pairing HTSQL
with an entirely AJAX data-browser, DBGUI.

In a typical two-tier web architecture, exemplified
by many PHP applications, URIs are associated with a
page template. Each page description contains several
SQL query templates, complete with place-holders for
parameters. An HTTP request causes parameter substi-
tution, query execution, and construction of the result-

ing HTML response based on the template. While it is
straightforward to construct applications in this manner,
the conflation of user interface with business logic and
database query construction leaves much to be desired.

Three-tier architectures, such as Ruby on Rails or
Enterprise Java Beans, create an intermediate business
object layer between the database and the interface pre-
sentation. In these systems, objects are persisted via
an object-to-relational mapper. The user interface of
these applications is often a page templating system (di-
rectly accessing the intermediate objects) or client-side
Javascript code using AJAX. As scalable as these solu-
tions may be, database access is necessarily limited to
what the business logic tier supports.

An emerging architecture is a hybrid that allows us-
er access at multiple tiers. The first tier is a "native" web
query language, such as Google Data or XML Query
Language over HTTP. In this scenario, the user interface
tier is often client-side Javascript using AJAX to inter-
act with the datastore. A three-tier variant is also viable,
where an intermediate business object layer uses HTTP
requests instead of SQL to implement persistence. What
this new approach enables is profound: direct user ac-
cess to the full capabilities of the database tier. Unfortu-
nately, current implementations of these datastores rely
upon proprietary or non-relational database technology,
unnecessarily increasing adoption cost and risk.

While direct access to the database tier (bypassing
presentation and middle-tier business logic) is not al-
ways desirable, it can be incredibly useful. All too often,
end-users of the system would like to get at their data
without having to wade through the constraints of the
application's chrome or they would like to hire someone
else to write a different report or work-flow screen. Di-
rect access to the datastore permits transparent applica-
tion extensibility. Further, this approach provides enor-
mous performance advantages to collaborative applica-
tions, or "mash-ups"; screen scraping and the mainte-
nance of extracted data-sets for local processing are no
longer necessary.

HTSQL works with modern web browsers and
open source relational databases, such as PostgreSQL,
(and soon) SQLite and MySQL. HTSQL is open source
software. The specification and implementation are
found at http://htsql.org/.

Example 1. A Trivial HTSQL Example

/project

SELECT p.*
 FROM project p
ORDER BY p.proj_id

In these examples we assume a simple task-track-
ing schema having a project and a task table. There
is a many-to-one relationship between these tables such
that every task has exactly one project. The primary key
of the project table is a proj_id text column. The pri-
mary key of the task table is proj_id and task_no
where proj_id refers to the corresponding column in the
project table and task_no is an integer.

2. Design of HTSQL

The target audience for HTSQL is the accidental
programmer, a person who customizes and tweaks soft-
ware, a power-user. These individuals are not software
engineers; instead, they are system administrators, busi-
ness analysts -- even professional accountants or medi-
cal researchers. These people know their data inside and
out. They are the ones who play with URIs just to "see
what happens". It is an explicit goal for a URI-based
SQL access language to be intuitive and helpful; com-
pleteness or even consistency is not nearly as important
as usability.

This section covers the design of the HTSQL lan-
guage, explaining how various features of SQL are cov-
ered, why particular decisions were made and what is
their impact upon usability. We start with the most te-
dious detail, quoting and escaping.

2.1. Character Set, Escaping & Strings

By definition, HTSQL is a URI scheme, and there-
fore it must follow the syntax of RFC 2396 and its
successor, RFC 3986. For readability, HTSQL employs
several characters in the unwise or reserved categories.
Conversely, some characters HTSQL uses for operators
or delimiters are unreserved. Therefore, HTSQL does
not use percent-encoding for syntactic escaping as an-
ticipated by RFC 3986. Instead, it relies upon standard
UTF-8 percent-encoding solely for transmission, such
as inclusion in an HTML href attribute.

Following SQL's lead, HTSQL has two kinds
of strings: literal values and catalog identifiers. Lit-
eral strings in HTSQL are single-quoted ('), dou-
bling the single quote when one occurs in a value,
'O''Reilly'. As in SQL, numeric literals need not
be quoted. Note that "C"-style escaping is not required
since URI percent-encoding can be used to represent

non-printable or non-ASCII characters. However, a sin-
gle quote cannot be escaped in this manner since decod-
ing is performed before parsing.

Catalog identifiers, e.g., table or column names, can
always be double-quoted ("), although this is seldom
necessary. Following SQL's precedent, HTSQL cata-
log names can be left unquoted when a case-insensi-
tive comparison uniquely matches a given table or col-
umn name. Furthermore, the underscore (_) can be used
to match a space, dash, or any other non-alphanumer-
ic character; test_3 matches tables named TEST-3
and Test 3. This matching scheme permits HTSQL
identifiers to serve as valid Javascript identifiers. It al-
so permits HTSQL URIs to be used in double-quoted
XML/HTML attributes without percent-encoding.

Earlier passes of the HTSQL grammar limited in-
dicators to the reserved sub-delims character set as de-
scribed in RFC 3986 and was solely dependent upon
percent-encoding for string escaping. This solution used
spelled out functions for basic operators (e.g less-than()
instead of the unwise < character). Common queries
were verbose and confusing, requiring casual users to
code expressions with reverse polish notation rather
than the more usual infix notation. Worse, common
URI-handling functionality in browsers and URI fetch-
ing APIs were often uncooperative: they would percent-
encode (or un-encode) characters where the encoding
was significant. After significant hair loss, HTSQL uses
percent-encoding solely for transport-level encoding.

2.2. Predicate Expressions

The usual URI query format, HTML FORM sub-
mission, is a sequence of name=value pairs delimited
by an ampersand (&). While this model is very success-
ful, it intuitively limits queries to a conjunction of com-
parisons between column names and values. Although
one could work creatively to introduce full predicate
power into this limited syntax, the result would require
variable definition and references and might be gener-
ally unreadable. A break from this tradition is needed.

Query parameters in HTSQL emulate the HTML
FORM tradition in that the ampersand (&) signifies con-
junction and the equal sign (=) signifies equality. The
similarity stops there. Following the "C" language tra-
dition, HTSQL adds the vertical bar (|) for alternation,
the exclamation mark (!) for negation, and parenthe-
ses to indicate scoping. Further, the right-hand side vs.
left-hand side distinction is also discarded, permitting
expressions based on single-quoted literals or unquoted
column names on either side of an operator.

In addition to the differences above, HTSQL adds
a function call syntax, e.g., lower() as well as intro-

ducing the standard comparison and mathematical op-
erators. POSIX regular expressions are specified via a
tilde (~); a single tilde is case-insensitive and a double
tilde is case-sensitive. If a given database does not di-
rectly support POSIX regular expressions, an HTSQL
processor should attempt to convert regular expressions
to the corresponding SQL92 LIKE or SQL99 SIMI-
LAR TO expressions. Direct support for these SQL op-
erators is not provided.

Example 2. Filtered List of Tasks

/task?status~'done'|hours>0.5

SELECT t.* FROM t.task
WHERE LOWER(t.status) LIKE '%done%'
 OR t.hours > 0.5
ORDER BY t.proj_id, t.task_no

Although HTSQL URIs do not follow HTML
FORM semantics, they can be constructed with
Javascript and submitted via XMLHTTPRequest.
To support standard HTML form submission, HT-
SQL honors POST requests having the multi-
part/form-data (RFC2388) or application/
x-www-form-urlencoded (HTML32) mimetype.
In these cases, the left-hand side of each query-argu-
ment pair is assumed to be a column name; the right-
hand side, a literal. Following the column name is an
optional operator, e.g., proj_id~ requests a case-in-
sensitive regular-expression search on proj_id.

2.3. Join Specifiers

In typical database usage, foreign key relationships
denote a valid join. Although versions of SQL up to
SQL 2003 do not provide an explicit syntax for auto-
matic join construction, the comments to the SQL 2003
specification describe this idea. In HTSQL, a specifier is
a reference to a column of the current table, or it is a se-
ries of links to a related table or to a column in a related
table. These links are delimited by the period (.), where
each period represents an SQL join to be constructed.
Every link has a a name and is defined as a pairing of
columns needed to construct the corresponding join.

The HTSQL reference implementation uses
SQL92's INFORMATION_SCHEMA to discover foreign
key constraints and to define links based on the implied
relationships. When possible, a foreign key constraint is
named for the table it references. If more than one link
to the referenced table is possible, the links are named
after the corresponding columns. If this method does not
yield a unique name, then the foreign key constraint's
name is used. This default configuration can be manu-
ally overridden.

Example 3. Filtering by a Specifier

/task?project.is_closed

SELECT t.* FROM task t
 JOIN project p
 ON (p.proj_id = t.proj_id)
 WHERE p.is_closed
ORDER BY t.proj_id, t.task_no

While foreign key constraints from the referencing
table to the referent provide a singular relationship, it
is possible to reverse the join direction. In this case, for
each row being be returned in the result set, more than
one row in the referencing table is matched. This is a
plural join specifier. HTSQL's semantics evaluate plu-
ral cardinality up the expression tree as far as possible,
permitting queries that test for a condition in a subor-
dinate table. Eventually, to be evaluated, a plural spec-
ifier must become singular. This is either done with an
explicit aggregate function such as sum() or implicitly
via exists().

Given /project?task.status='done', an
HTSQL processor returns all project rows where
there exists at least one corresponding task having a
status of 'done'. This behavior requires moderate-
ly complex bookkeeping to determine contexts where
evaluation is occurring. Each context corresponds to a
correlated sub-query in the generated SQL. The gener-
ated SQL will vary according to the placement of func-
tions that convert a plural to a singular value. The fol-
lowing example returns projects that have a total of at
least three hours of time spent on all of their subordinate
tasks.

Example 4. Projects Filtered by Aggregate

/project?sum(task.hours)>3.0

SELECT p.* FROM project p
 WHERE (SELECT SUM(t.hours) FROM task t
 WHERE p.proj_id = t.proj_id) > 3.0
ORDER BY p.proj_id

2.4. Column Selectors and Projections

In HTSQL, result-set column selection is
accomplished using curly braces, for example,
project{name,title}. By default, result sets are
sorted according to the table's primary key. If an expres-
sion has a trailing plus (+) or minus (-), then the sort is
ascending or descending, respectively, on that expres-
sion. A selector lacking a preceding table can be used to
return a scalar, e.g., {now()}.

Aggregate expressions are indicated in a column
selector with a vertical bar (|). Expressions before the

vertical bar are selected and used in the corresponding
GROUP BY clause. While the general SQL syntax does
not conflate selecting a column and grouping by it, HT-
SQL does because the two operations are highly corre-
lated in practice and superfluous columns can be easily
ignored.

We call the vertical bar projection since it caus-
es the correlation between the set of rows returned and
rows from the referenced table to differ. In the follow-
ing example, rows are returned for each unique pair
of project.name and status specifiers. A DIS-
TINCT result is therefore obtained by using the projec-
tion indicator without providing an aggregate expres-
sion, task{project.name,status|}. This syn-
tax overloading requires that alternations must be sur-
rounded by parentheses to be used in a selector.

Example 5. Selecting Aggregate Expressions

/task{project.name,status-|sum(hours)}

SELECT p.name, t.status, sum(t.hours)
 FROM task t JOIN project p
 ON (p.proj_id = t.proj_id)
GROUP BY p.name, t.status
ORDER BY t.status DESC, p.name

2.5. Row Locators

The most common operation in a database
application is the retrieval of a row by prima-
ry key. Since an HTSQL processor is config-
ured to use primary key constraints, naming the
columns is redundant. Therefore, a request such as
task?proj_id='MEYERS'&task_no=1 can be
shortened significantly to task[MEYERS.1].

This locator syntax is inspired by the domain name
system (DNS). A row locator is indicated with matching
square brackets ([]) and contains a comma-separat-
ed list of row locations. Each location is a series of pri-
mary key column values ("labels"), delimited by a peri-
od (.). Unquoted labels are compared in a case-insen-
sitive manner, similar to unquoted catalog identifiers. If
a case-sensitive match is needed to uniquely identify a
given row, then the label should be single quoted.

Example 6. Locating rows via Primary Key

/task[meyers.1]

SELECT t.*
 FROM task t JOIN project p
 ON (p.proj_id = t.proj_id)
 WHERE htsql_norm(p.proj_id)
 = htsql_norm('meyers')
 AND t.task_no = 1

htsql_norm(x) :=
TRANSLATE(TRIM(BOTH ' ' FROM
 LOWER(CAST($1 AS TEXT)>)),
 ' ~`!@#$%^&*()-_={}[]|\:;"<>,.?/''',
 '--------------------------------')

When a table's primary key contains a foreign-key
reference to another table, then those columns are not
included in the locator. Instead, the referenced table's
locator is used. This extra join permits the referenced
table's locator to differ from the primary key columns
of the referent, although the extra join can be opti-
mized away in the SQL query above. If the refer-
enced table's locator has more than one label, then it is
grouped in parentheses. For example, a cross-product
task_dependency table with a primary key having
exactly two task table references might have a locator
like (MEYERS.1).(SMITH.8).

In this locator syntax, unquoted (case-insensitive)
labels are limited to alphanumeric characters plus the
hyphen (-), which matches a single whitespace or non-
alphanumeric character. This choice of wildcard is in-
formed by the usual occurrence of the hyphen in prod-
uct codes or serial numbers (e.g., EH-348-X). The la-
bel syntax is also compatible with ISO 8601 dates (e.g.,
2007-06-25), encouraging use of this standard date
format.

The id() function returns the locator for the cur-
rent row. Text columns are single-quoted by default,
since there may be some rows which differ only by case.
Integer, date, and boolean columns, or columns explic-
itly configured otherwise, are not quoted.

2.6. Path Segments

Relative URIs, indicated with the forward-slash /,
intuitively support drill-down behavior. In this resource
navigation technique, a new path segment is appended
to the URI as one traverses deeper into a hierarchical
structure. For HTSQL, each path segment corresponds
to a table reference, together with an optional specifier,
row locator, and filter expression. Filter expressions in
a path segment context are indicated by the semi-colon
(;) instead of the question mark.

When two or more path segments are used, they
must be connectable via a primary link, where the
descendant's primary key contains a reference to a can-
didate key of the parent table. The resulting SQL joins
both tables, asserting that exactly one possible link ex-
ists.

Example 7. Joining via Path Segments

/project;!is_closed/(+)task

SELECT p.proj_id AS "project.proj_id",
 p.name AS "project.name",
 ...
 t.proj_id AS "task.proj_id",
 t.task_no AS "task.task_no",
 t.hours AS "task.hours",
 ...
 FROM project p
 LEFT OUTER JOIN task t
 ON (p.proj_id = t.proj_id)
 WHERE NOT p.is_closed
ORDER BY p.proj_id,
 t.proj_id, t.task_no

This syntax has optional join modifiers. If a
segment's table is prefixed by "(+)" then an OUTER
JOIN is used. If "(*)" is indicated, the tables are not
joined and a cross product is performed instead. With
the mask modifier, "(!)", the path segment is ignored
unless a subsequent path segment can be connected via
a series of links. This mask syntax facilitates an unob-
trusive yet effective row-level permission mechanism.

Path segments can also have their own selector. By
using an empty column selector, a path segment can
be used to filter without returning results. For example,
/project[meyers]{}/task returns tasks in the
meyers project but does not return columns for that
project. In HTSQL 1.0, segment selectors containing
projections are not permitted.

2.7. Commands, Assignment, and Lookups

The default operation for an HTSQL re-
quest is the select() command without argu-
ments, corresponding to an SQL SELECT state-
ment. An explicit command can instead be provid-
ed as the last segment of a URI. For example,
rows 100-149 of a result set can be returned us-
ing the explicit, parameterized SELECT command,
select(limit=50,offset=100). Besides se-
lect() command, HTSQL also supports insert(),
update(), and delete(), among others.

Example 8. Insert Statement

/project[newprj]
 /insert()?name:='New Project'

INSERT INTO project (proj_id, name)
VALUES ('newprj', 'New Project')

To support data modification, the assignment op-
erator (:=) is used. In an update(), the traditional
equality operator is used to limit the affected roles while
the assignment operator is used to set values. In an in-
sert() command, locators imply assignment rather
than a test for equality.

Example 9. Update Statement

/project[newprj]
 /update()?name:='Different Name'

UPDATE project
 SET name = 'Different Name'
 WHERE htsql_norm(proj_id)
 = htsql_norm('newproj')

HTSQL provides a mechanism to make assign-
ments by specifier, which then affects the foreign
key columns of the corresponding link. This feature
removes the need to track each table's primary key
and foreign key columns, reducing error and improv-
ing readability. To make this work, HTSQL has a
lookup operator (@). This syntax is particularly power-
ful for multi-column foreign-key assignments or in cas-
es where the foreign key of the referencing table does
not directly correspond to the primary key of the refer-
ent.

Example 10. Assignment via Lookup

/task[meyers.1]/update()?
 assigned_to:=@employee[john]

UPDATE task
 SET assigned_to =
 (SELECT empl_code
 FROM employee
 WHERE htsql_norm(empl_code)
 = htsql_norm('john'))
WHERE (proj_id, task_no) IN
 (SELECT t.proj_id, t.task_no
 FROM task t
 JOIN project p
 ON (p.proj_id = t.proj_id)
 WHERE htsql_norm(p.proj_id)
 = htsql_norm('meyers')
 AND t.task_no = 1)

2.8. Users, Roles, and Conflicts

Since HTSQL uses HTTP as a base protocol, it as-
sumes that the REMOTE_USER gateway variable cor-
responds to an actual database user and executes SET
SESSION AUTHORIZATION to shed any adminis-
trator privileges for the subsequent query. The user's
role, on the other hand, can be set via HTSQL URI us-
ing a tilde in the first path segment, such as /~clerk/
project . This causes SET ROLE 'clerk' be per-
formed before any query is executed. Note that tables,
columns, domains, and any transitively associated links
are affected by setting the user and role. Role usage in
this manner provides stable and sharable URIs that ref-
erence the same resource across users who would nor-
mally have different permission sets.

In HTSQL, if a table is configured to have a "ver-
sion" column, optimistic locking can be used. In this
case, each locator can be followed with a version tag,
delimited with the semi-colon (;). For example, [mey-
ers.1;4] might refer to the 4th revision of the a given
task. When a command uses a locator having the version
tag, the HTSQL processor additionally verifies that the
column (usually a sequence or timestamp) associated
with the version tag matches. The id(version=1)
function returns a row locator with its version tag.

2.9. Types and NULLs

HTSQL has a powerful type system, designed to
be intuitive for casual users. Quoted literal values and
null() are not assigned a type immediately; instead,
the type is inferred from context. Automatic type con-
version only occurs in the presence of boolean opera-
tors (including the implicit top level conjunction). As in
Python, boolean conversion treats empty strings, arrays
lacking elements, zero intervals, and zero numeric val-
ues as FALSE. This careful balance yields succinct ex-
pressions without sacrificing type safety.

Boolean operators treat NULL values according to
SQL rules. HTSQL extends this behavior by defin-
ing the boolean value of a non-boolean NULL expres-
sion to be FALSE. This permits concise foreign-key
checking, e.g., /task?!assigned_to would in-
clude rows from the task table where the foreign key
assigned_to IS NULL. However, for boolean-
valued columns, this transformation does not apply.
Hence, /project?!is_closed will not include
rows where is_closed IS NULL.

To facilitate NULL comparison, HTSQL employs
a doubled equal sign (==) to mean SQL99 IS NOT
DISTINCT FROM operator. In the above exam-
ple, one could check for both FALSE and NULL
rows on a boolean-valued column with the expression
project?is_closed!==true(). HTSQL uses

functions such as true(), false(), and null()
to represent SQL constants. Functions such as coa-
lesce() or is_null() reflect the corresponding
SQL construct.

2.10. Namespaces and Objects

Namespaces in HTSQL follow XML's lead, us-
ing the colon (:) as a delimiter. By default, function,
command, and table references need not include the
namespace if they are otherwise unique. However, if
a given user has access to two different tables named
project, a reference should use the schema's catalog
identifier, e.g., tm:project to specify the project
table in the tm schema. Standard functions reside within
the htsql: namespace and user-defined functions or
commands can be registered via plugins and accessed
through other namespaces.

HTSQL support methods and attributes
on objects. For example, calling SQL's
CHARACTER_LENGTH function is accomplished
through a length() method on a text column,
e.g., project{proj_id,name.length()}. For
the DATE data type, the day, month, and year
are accessed through attributes, rather than us-
ing the unwieldy EXTRACT function. For example,
task{due_date.year|count()} lists the num-
ber of tasks grouped by the year they are due.

User-defined types are supported with a di-
rect translation from HTSQL into its SQL equiv-
alent. In HTSQL, ARRAYs are constructed us-
ing array(), and ROWs through row(). Assign-
ment to a user-defined composite type is done by
pairing a selector listing field labels to a selec-
tor listing the values. For example, some_table?
udt_column{field_one, field_two} :=
{'value_one', 'value_two'}.

2.11. Output Formats

HTSQL result sets are returned in industry-stan-
dard formats, including TXT, XML, CSV, JSON,
HTML, and YAML. The default format is determined
by HTTP Content-Type negotiation, or if that fails, is a
whitespace-padded plain-text format for debugging and
testing. An explicit format can be requested by using a
standard "file extension" on the referenced table, e.g.,
/task.xml .

If there is more than one path segment provid-
ed, and if the result format is hierarchical (such as
XML), then nested element structures are used. For da-
ta-manipulation operations, such as an update(), if
a column selector is included with the referenced ta-
ble, the affected rows are returned. This corresponds to
PostgreSQL's RETURNS clause, a very helpful exten-

sion to SQL which the author hopes will be included in
future versions of the standard.

3. Conclusion

Starting with an initial vision of a coherent URI-to-
SQL translator over 4 years ago, HTSQL has matured
in numerous ways and has proven itself to be a valu-
able component in a rapid web application development
architecture. Beyond what was discussed above, HT-
SQL has facilities for details like transactions, as well as
pluggable commands for things like mail merging and
label generation. HTSQL has made development faster
and more reliable than previous methods and facilitates
re-usable modules and database schemas.

While it provides only anecdotal evidence, one user
(a medical researcher at Yale University) is well known
for "fiddling" with HTSQL URIs to get the data he
wants. After a few months of using our system though
the user interface, he now frequently ignores the HTML
and Javascript UI and goes directly for the URIs. He did
this without a manual and without any encouragement.
The adoption of database-tier access by the accidential
programmer will be tested more this year, as the system
is deployed to additional sites. We think that HTSQL
will rise to the challenge.

4. Acknowledgments and References

Support for this research was provided by a gen-
erous award from the Simons Foundation and by
Prometheus Research. This work would not have been
possible without Python, PostgreSQL, and the amaz-
ing group of people that support these projects. The au-
thor wishes to thank Kirill Simonov for his thoughtful
contributions to the design of HTSQL and his excellent
implementation. Finally, researchers at the Yale Child
Study Center deserve thanks for braving earlier versions
of HTSQL.

[1] Roy T. Fielding, James Gettys, Jeffrey C. Mogul,
Henrik Frystyk Nielsen, and Larry Masinter. Hypertext
Transfer Protocol—HTTP/1.1 . IETF RFC. 2616. June
1999.

[2] Tim Berners-Lee, Roy T. Fielding, and Larry Masin-
ter. Uniform resource identifiers (URI): Generic syntax.
RFC 2396. 1998. http://www.ietf.org/rfc/rfc2396.txt.

[3] Tim Berners-Lee, Roy T. Fielding, and Larry Mas-
inter. Uniform resource identifier (URI): Generic syn-
tax. RFC 3986. January 2005. http://www.ietf.org/rfc/
rfc3986.txt.

[4] David Raggett. HTML 3.2 Reference Specification.
{W3C} recommendation. W3C. January 1997. http://
www.w3.org/TR/REC-html32-19970114.

[5] Larry Masinter. Returning Values from Forms:
multipart/form-data. RFC 2388. August 1998. http://
www.ietf.org/rfc/rfc2388.txt.

[6] International Organization for Standardization. ISO/
IEC 9075:1992 Database Language SQL. 1999.

[7] International Organization for Standardization. ISO/
IEC 9075-2:1999: SQL Part 2: Foundation. 1999.

[8] International Organization for Standardization. ISO/
IEC 9075-2:2003 SQL Part 2: Foundation. 2003.

[9] PostgreSQL Development Group. PostgreSQL Re-
lational Database. http://postgresql.org.

[10] Python Development Community. Python Lan-
guage. http://python.org.

[11] Douglas Crockford. The application/json media
type for JavaScript Object Notation (JSON). RFC 4627.
July 2006. http://json.org/.

[12] Yakov Shafranovich. Common format and med-
it type for comma-separated values (CSV) files. RFC
4180. October 2005.

[13] Oren Ben-Kiki, Clark Evans, and Brian Ingerson.
YAML Ain't Markup Language (YAML) v 1.1. December
2004. http://yaml.org/spec/.

[14] Tim Bray, Jean Paoli, and C.M. Sperberg-Mc-
Queen. Extensible Markup Language (XML). Febuary
1998.

[15] ECMA. ECMA-262: ECMAScript
Language Specification. ECMA (Euro-
pean Association for Standardizing Infor-
mation and Communication Systems)December
1999. http://www.ecma-international.org/publications/
files/ecma-st/ECMA-262.pdf.

[16] Google, Inc.. Google Data APIs Protocol Refer-
ence. Google, Inc. 2006. http://code.google.com/apis/
gdata/reference.html.

[17] Scott Boag, Don Chamberlin, Mary Fernandez,
Daniela Florescu, Jonathan Robie, and Jerome Simeon.
XQuery 1.0: An XML Query Language. W3C January
2007. http://www.w3.org/TR/xquery/.

